Asymptotic theorems for cumulative processes

Laetitia Colombani, under the direction of Manon Costa and Patrick Cattiaux

IMT

27th October 2021, Colloque JPS, Ile d'Oléron

Laetitia Colombani (IMT)

Renewal process

Definition

Let $(\tau_i)_{i\in\mathbb{N}^*}$ an i.i.d. sequence of random variable, such that $\tau_i>0$ a.s. Then $S_n=\sum_{i=1}^n \tau_i$ is a renewal process. The counting process associated to S_n is

$$M_t = \sup_{n \in \mathbb{N}} \left\{ \sum_{i=1}^n \tau_i \le t \right\}.$$

Renewal process

Definition

Let $(\tau_i)_{i\in\mathbb{N}^*}$ an i.i.d. sequence of random variable, such that $\tau_i>0$ a.s.

Then $S_n = \sum_{i=1}^n \tau_i$ is a renewal process. The counting process associated to S_n is

$$M_t = \sup_{n \in \mathbb{N}} \left\{ \sum_{i=1}^n \tau_i \le t \right\}.$$

Example: Poisson process

If $\tau_i \sim \mathcal{E}(\lambda)$, then M_t is a Poisson process of parameter λ .

Cumulative process

Definition

Let $(\tau_i, W_i)_i$ i.i.d. couples of random variable.

Let M_t the counting process associated with $(\tau_i)_i$: $M_t = \sup_{n \in \mathbb{N}} \{\sum_{i=1}^n \tau_i \leq t\}$. The cumulative process associated with $(\tau_i, W_i)_i$ is

$$Z_t = \sum_{i=1}^{M_t} W_i.$$

Law of large numbers and TCL

Proposition

Assume $\mathbb{E}[W] < \infty$ and $\mathbb{E}[\tau] < \infty$. Let $m = \frac{\mathbb{E}[W]}{\mathbb{E}[\tau]}$. Then

$$\frac{Z_t}{t} \underset{t \to \infty}{\overset{a.s.}{\longrightarrow}} m.$$

Moreover, if $Var[W] < \infty$ and $Var[\tau] < \infty$, then

$$\sqrt{t}\left(rac{Z_t}{t}-m
ight) \stackrel{law}{\underset{t
ightarrow \infty}{\longrightarrow}} \mathcal{N}\left(0,\sigma^2
ight),$$

where
$$\sigma^2 = \frac{Var(W-m\tau)}{\mathbb{E}(\tau)}$$
.

Idea for Law of Large Numbers

For renewal processes, we have

$$\frac{M_t}{t} \overset{a.s.}{\underset{t \to \infty}{\longrightarrow}} \frac{1}{\mathbb{E}[\tau]}.$$

Idea for Law of Large Numbers

$$rac{ extit{M}_t}{t} \stackrel{a.s.}{\underset{t o \infty}{\longrightarrow}} rac{1}{\mathbb{E}[au]} ext{ so } rac{ extit{Z}_t}{t} = rac{ extit{M}_t}{t} \left(rac{1}{ extit{M}_t} \sum_{i=1}^{ extit{M}_t} extit{W}_i
ight).$$

Idea for Law of Large Numbers

$$\dfrac{M_t}{t} \overset{a.s.}{\underset{t o \infty}{\longrightarrow}} \dfrac{1}{\mathbb{E}[au]} ext{ so } \dfrac{Z_t}{t} = \underbrace{\dfrac{M_t}{t}}_{\underset{t o \infty}{\longrightarrow} \dfrac{1}{\mathbb{E}[au]}} \underbrace{\left(\dfrac{1}{M_t} \sum_{i=1}^{M_t} W_i
ight)}_{\overset{a.s.}{\underset{t o \infty}{\longrightarrow}} \mathbb{E}[W]}.$$

LLN proved.

Idea for LCT

$$\frac{Z_t}{t} - m = \frac{\sum_{i=1}^{M_t} W_i - tm}{t} = \frac{\sum_{i=1}^{M_t} (W_i - \tau_i m) + \left(\sum_{i=1}^{M_t} \tau_i m - tm\right)}{t}$$

Idea for LCT

$$\frac{Z_t}{t} - m = \frac{\sum_{i=1}^{M_t} W_i - tm}{t} = \frac{\sum_{i=1}^{M_t} (W_i - \tau_i m) + \left(\sum_{i=1}^{M_t} \tau_i m - tm\right)}{t}$$

$$\sqrt{t}\left(\frac{Z_t}{t}-m\right) = \sqrt{t}\frac{\sum_{i=1}^{M_t}(W_i-\tau_i m)}{t} + \sqrt{t}\frac{\sum_{i=1}^{M_t}\tau_i m - t m}{t}$$

Idea for LCT

$$\frac{Z_t}{t} - m = \frac{\sum_{i=1}^{M_t} W_i - tm}{t} = \frac{\sum_{i=1}^{M_t} (W_i - \tau_i m) + \left(\sum_{i=1}^{M_t} \tau_i m - tm\right)}{t}$$

$$\sqrt{t} \left(\frac{Z_t}{t} - m \right) = \sqrt{t} \frac{\sum_{i=1}^{M_t} (W_i - \tau_i m)}{t} + \sqrt{t} \frac{\sum_{i=1}^{M_t} \tau_i m - t m}{t} \\
= \frac{\sqrt{M_t}}{\sqrt{t}} \frac{\sum_{i=1}^{M_t} (W_i - \tau_i m)}{\sqrt{M_t}} + \sqrt{t} m \frac{\sum_{i=1}^{M_t} \tau_i - t}{t}$$

Idea for LCT

$$\frac{Z_t}{t} - m = \frac{\sum_{i=1}^{M_t} W_i - tm}{t} = \frac{\sum_{i=1}^{M_t} (W_i - \tau_i m) + \left(\sum_{i=1}^{M_t} \tau_i m - tm\right)}{t}$$

$$\sqrt{t} \left(\frac{Z_t}{t} - m \right) = \sqrt{t} \frac{\sum_{i=1}^{M_t} (W_i - \tau_i m)}{t} + \sqrt{t} \frac{\sum_{i=1}^{M_t} \tau_i m - t m}{t}$$

$$= \underbrace{\frac{\sqrt{M_t}}{\sqrt{t}}}_{t \to \infty} \underbrace{\frac{\sum_{i=1}^{M_t} (W_i - \tau_i m)}{\sqrt{M_t}}}_{t \to \infty} + \underbrace{\sqrt{t} m \underbrace{\sum_{i=1}^{M_t} \tau_i - t}_{t \to \infty}}_{t \to \infty}$$

Important assumptions

▶ $\exists \beta_0 \in (0, +\infty]$ such that $\mathbb{E}[e^{\beta \tau}] < \infty$ for $\beta < \beta_0$,

Important assumptions

- $ightharpoonup \exists \beta_0 \in (0,+\infty]$ such that $\mathbb{E}[e^{\beta \tau}] < \infty$ for $\beta < \beta_0$,
- $ightharpoonup \exists \theta_0 \in (0, +\infty] \text{ such that } \mathbb{E}[e^{\theta|W|}] < \infty, \text{ for } \theta < \theta_0,$

Important assumptions

- $ightharpoonup \exists eta_0 \in (0,+\infty] \text{ such that } \mathbb{E}[\mathrm{e}^{eta au}] < \infty \text{ for } eta < eta_0$,
- $ightharpoonup \exists \theta_0 \in (0, +\infty] \text{ such that } \mathbb{E}[e^{\theta|W|}] < \infty, \text{ for } \theta < \theta_0,$
- (other assumption : for all interval \mathcal{I} such that $\mathbb{P}(W \in \mathcal{I}) > 0$, it holds : for all $t \geq 0$, $\mathbb{P}(\tau > t, W \in \mathcal{I}) > 0$)

Rate functions

For W^n a well-chosen reduction of W, we introduce the Cramer transform for $(a,b) \in \mathbb{R}^2$, and the rate function J^n associated for $z \in \mathbb{R}^+$

$$\Lambda_n^*(a,b) = \sup_{x,y} \left\{ ax + by - \ln \mathbb{E} \left(e^{x\tau + yW^n} \right) \right\} \quad \text{and} \quad J^n(z) = \inf_{\beta > 0} \beta \Lambda_n^* \left(\frac{1}{\beta}, \frac{z}{\beta} \right).$$

Rate functions

For W^n a well-chosen reduction of W, we introduce the Cramer transform for $(a,b) \in \mathbb{R}^2$, and the rate function J^n associated for $z \in \mathbb{R}^+$

$$\Lambda_n^*(a,b) = \sup_{x,y} \left\{ ax + by - \ln \mathbb{E} \left(e^{x\tau + yW^n} \right) \right\} \quad \text{and} \quad J^n(z) = \inf_{\beta > 0} \beta \Lambda_n^* \left(\frac{1}{\beta}, \frac{z}{\beta} \right).$$

We also define

$$\tilde{J}(z) = \sup_{\delta > 0} \liminf_{\substack{n \to \infty \ |y-z| < \delta}} \inf_{J^n(y)}.$$

Rate functions

For W^n a well-chosen reduction of W, we introduce the Cramer transform for $(a,b) \in \mathbb{R}^2$, and the rate function J^n associated for $z \in \mathbb{R}^+$

$$\Lambda_n^*(a,b) = \sup_{x,y} \left\{ ax + by - \ln \mathbb{E} \left(e^{x\tau + yW^n} \right) \right\} \quad \text{ and } \quad J^n(z) = \inf_{\beta > 0} \ \beta \Lambda_n^* \left(\frac{1}{\beta}, \frac{z}{\beta} \right).$$

We also define

$$\tilde{J}(z) = \sup_{\delta > 0} \liminf_{n \to \infty} \inf_{|y-z| < \delta} J^n(y).$$

For W, we introduce the Cramer transform for $(a,b) \in \mathbb{R}^2$, and the rate function J associated for $z \in \mathbb{R}^+$

$$\Lambda^*(a,b) = \sup_{x,y} \left\{ ax + by - \ln \left(\mathbb{E} \left[e^{x\tau + yW} \right] \right) \right\} \quad \text{ and } \quad J(z) = \inf_{\beta > 0} \ \beta \, \Lambda^* \left(\frac{1}{\beta}, \frac{z}{\beta} \right).$$

Theorem

▶ If $\theta_0 = +\infty$ (in particular if W is bounded) then $\frac{1}{t} \sum_{i=1}^{M_t} W_i$ satisfies a full LDP with good rate function \tilde{J} , i.e.

$$\text{for any closed set } \mathcal{C} \in \mathbb{R}, \qquad \limsup_{t \to \infty} \, \frac{1}{t} \, \ln \mathbb{P} \left(\frac{1}{t} \sum_{i=1}^{M_t} W_i \, \in \, \mathcal{C} \right) \, \leq \, - \, \inf_{m \in \mathcal{C}} \, \widetilde{J}(m),$$

$$\text{for any open set } \mathcal{O} \in \mathbb{R}, \qquad \liminf_{t \to \infty} \, \frac{1}{t} \, \ln \mathbb{P} \left(\frac{1}{t} \sum_{i=1}^{M_t} W_i \, \in \, \mathcal{O} \right) \, \geq \, - \, \inf_{m \in \mathcal{O}} \, \widetilde{J}(m).$$

Theorem

▶ If $\theta_0 = +\infty$ (in particular if W is bounded) then $\frac{1}{t} \sum_{i=1}^{M_t} W_i$ satisfies a full LDP with good rate function \tilde{J} . We also have the following inequalities

$$\limsup_{t \to +\infty} \frac{1}{t} \ln \mathbb{P} \left(\frac{1}{t} \sum_{i=1}^{M_t} W_i \ge m + a \right) \le -\inf_{z \ge m+a} J(z),$$

$$\limsup_{t \to +\infty} \frac{1}{t} \ln \mathbb{P} \left(\frac{1}{t} \sum_{i=1}^{M_t} W_i \le m - a \right) \le -\inf_{z \le m-a} J(z).$$

Theorem

- ▶ If $\theta_0 = +\infty$ (in particular if W is bounded) then $\frac{1}{t} \sum_{i=1}^{M_t} W_i$ satisfies a full LDP with good rate function \tilde{J} .
- ▶ If $\theta_0 < +\infty$, denoting $m = \mathbb{E}(W)/\mathbb{E}(\tau)$ we have for all a > 0

$$\limsup_{t\to +\infty}\,\frac{1}{t}\,\ln\mathbb{P}\left(\frac{1}{t}\sum_{i=1}^{M_t}W_i\geq m+a\right)\leq -\,\min\left[\inf_{z\geq m+(a/2)}J(z)\;,\;\theta_0a/4\right],$$

and

$$\limsup_{t \to +\infty} \frac{1}{t} \ln \mathbb{P} \left(\frac{1}{t} \sum_{i=1}^{M_t} W_i < m-a \right) \leq - \min \left[\inf_{z \leq m - (a/2)} J(z) \;, \; \theta_0 a/4 \right] \;.$$

Conclusion

We have:

- ► Law of large numbers
- Central limit theorem
- ► Large deviation principle : every exponential moment of *W* Deviations inequalities.

Conclusion

We have:

- ► Law of large numbers
- Central limit theorem
- ► Large deviation principle : every exponential moment of *W* Deviations inequalities.

Leads

▶ Obtain finite properties on cumulative process (finite deviations, etc)

Bibliography

- Søren Asmussen. Applied probability and queues. Second. Vol. 51. Applications of Mathematics (New York). Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 2003, pp. xii+438.
- [2] Patrick Cattiaux, L. C., and Manon Costa. Large deviation principles for cumulative processes and applications. 2021. arXiv: 2109.07800.